Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 113, 2015 - Issue 19-20: Special Issue in Honour of Sourav Pal
512
Views
13
CrossRef citations to date
0
Altmetric
Invited Articles

Examining the ground and first excited states of methyl peroxy radical with high-level coupled-cluster theoryFootnote

, &
Pages 2992-2998 | Received 15 May 2015, Accepted 08 Jun 2015, Published online: 09 Jul 2015
 

Abstract

Peroxy radicals (RO2) are intermediates in fuel combustion, where they engage in efficiency-limiting autoignition reactions. They also participate in atmospheric chemistry leading to the formation of unwanted tropospheric ozone. Advances in spectroscopic techniques have allowed for the possibility of employing the lowest () electronic transition of RO2 as a tool to selectively monitor these species, enabling accurate kinetic values to be obtained. Herein, high-level ab initio methods are employed to systematically refine spectroscopic predictions for the methyl peroxy radical (CH3O2), one of the most abundant peroxy radicals in the atmosphere. In particular, vibrationally corrected geometries and anharmonic vibrational frequencies for both the ground () and first excited () state are predicted using coupled-cluster theory with up to perturbative triples [CCSD(T)] and large atomic natural orbital basis sets. Equation-of-motion coupled-cluster theory is utilised to compute vertical transition properties; a radiative lifetime of 4.7 ms is suggested for the excited state. Finally, we predict the adiabatic excitation energy (T0) via systematic extrapolation to the complete basis limit of coupled-cluster with up to full quadruples (CCSDTQ). After accounting for several approximations, and including an anharmonic zero-point vibrational energy correction, we match experiment for this transition to within 9 cm−1.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplemental data

Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/00268976.2015.1063729.

Notes

1 Dedicated to Professor Sourav Pal.

Additional information

Funding

This research was supported by the Department of Energy, Office of Basic Energy Sciences [grant number DE-FG02-97-ER14748].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.