Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 114, 2016 - Issue 6
50
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical study on the mono and multiply oxygenated Si60H60 fullerene

, , &
Pages 819-828 | Received 23 Sep 2015, Accepted 12 Nov 2015, Published online: 18 Dec 2015
 

ABSTRACT

We have applied density functional theory (DFT) calculations to study the structures, stabilities, electronic and magnetic properties of mono and multiply oxygenated Si60H60 fullerenes (Si60H60–2nOn, n = 1, 3, 6, 9, 10, 12, 18, 20, 21, 27 and 30). DFT results show that rearrangement between the closed [6,6] and [5,6] isomers of Si60H58O follows a two-step pathway involving an intermediate and two transition states. Preserving the C3 symmetry in the cage structure, extra epoxidation of Si60H60 has been accomplished. Based on our results, formation energies per oxygen atom for the multiple additions of oxygen atoms on Si60H60 cage are positive (endothermic character), and increase with the increasing of the number of oxygen atoms. In general, the oxygenation of Si60H60 cage leads to an increase in the electrophilicity of the Si60H60–2nOn oxides. The oxygenation of Si–Si bonds not only introduces a substantial broadening of the NMR pattern but also yield individual peaks, indicating different electrostatic environments of silicon nuclei in the Si60H60–2nOn oxides.

Acknowledgements

We are grateful to Professor Seik Weng Ng for making us available his software (G98W) and hardware (machine time) facilities. The financial support of Research Council of Shahid Beheshti University is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.