123
Views
2
CrossRef citations to date
0
Altmetric
Articles

Separation of Dirac's Hamiltonian by Van Vleck transformation

Pages 190-213 | Received 28 Apr 2016, Accepted 14 Sep 2016, Published online: 12 Oct 2016
 

ABSTRACT

The now classic Foldy–Wouthuysen transformation (FWT) was introduced as successive unitary transformations. This fundamental idea has become the standard in later developments such as the Douglas–Kroll transformation (DKT) – but it is not the only possibility. FWT can be seen as a simple special case of the general Van Vleck transformation (VVT) which besides the successive version has another, known as the canonical because of a series of nice mathematical properties discovered gradually over time. The aim of the present paper is to compare the two approaches – which give identical results in the lower orders, but not in the higher. After having recapitalised both, we apply them to Dirac's Hamiltonian for the electron in a constant electromagnetic field, written with so few assumptions about the operators that the mathematical techniques stand out separated from the terminology of relativistic quantum mechanics. FWT for a free particle is dealt with by a recent geometric approach to VVT. The original FWT is continued through the next non-zero orders. DKT is considered with special weight on equivalent formulations of the generalised and the optimised forms introduced by Wolf, Reiher and Hess.

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.