Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 118, 2020 - Issue 3
312
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Structural, elastic, electronic, andoptical properties of layered TiNX (X = F, Cl, Br, I) compounds: a density functional theory study

ORCID Icon & ORCID Icon
Article: e1609706 | Received 23 Feb 2019, Accepted 10 Apr 2019, Published online: 24 Apr 2019
 

ABSTRACT

Titanium nitride halides, TiNX (X = F, Cl, Br, I) in the α-phase (orthorhombic) are exciting quasi two-dimensional (2D) electronic systems exhibiting a fascinating series of electronic ground states. Pristine TiNX are semiconductors with varying energy gaps and possess attractive properties for potential applications in optoelectronics, photovoltaics, and thermoelectrics. Alkali metal intercalated TiNCl becomes superconducting at reasonably high temperature. We have revisited the electronic band structure of TiNX using density functional theory (DFT) based calculations. The atomic orbital resolved partial electronic energy densities of states are calculated together with the total density of states (TDOS). The structural and elastic properties have been investigated in details for the first time. The elastic anisotropy has been explored. The optical properties of TiNX are studied for the first time. The Debye temperatures have been calculated and the related thermal and phonon parameters are discussed. The calculated physical parameters are compared with existing theoretical and experimental results and showed fair agreement. TiNX are found to reflect electromagnetic radiation strongly in the mid ultraviolet region. The elastic properties show high degree of anisotropy. The effect of halogen atoms on various structural, elastic, electronic, and thermal properties in TiNX are also discussed in detail.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.