Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 120, 2022 - Issue 1-2: Oleg Vasyutinskii Festschrift
156
Views
9
CrossRef citations to date
0
Altmetric
Articles

Combined crossed molecular beams and computational study on the N(2D) + HCCCN(X1Σ+) reaction and implications for extra-terrestrial environments

, , , , , , , , , , & show all
Article: e1948126 | Received 28 May 2021, Accepted 20 Jun 2021, Published online: 05 Jul 2021
 

Abstract

The reaction of the nitrogen atom (N) in its first electronically excited state (2D) with cyanoacetylene (HC3N) has been investigated under single-collision conditions by using the crossed molecular beam method with mass spectrometric detection at a collision energy of 31 kJ mol−1. With the support of electronic structure calculations, we found that this reaction proceeds via the barrierless addition of the N(2D) atom to the carbon–carbon triple bond of HC3N, followed by the formation of a cyclic intermediate adduct HC(N)CCN, which dissociates to C(N)CCN + H products or isomerises to a more stable intermediate HNCCCN by H-migration and ring-opening processes. The long-lived HNCCCN complex produces the linear 3Σg ground state dicyanocarbene (NCCCN) radical plus atomic hydrogen through a barrierless unimolecular dissociation accompanied by a negligible competitive channel forming the NCCCN radical (1A1) with a bent C2v structure plus H. The main product of this neutral-neutral reaction is the 3NCCCN radical that could be a potential precursor to form other nitriles (C2N2, C3N) or more complex organic species in planetary atmospheres, such as that of Titan and Pluto, in cometary comas, and in UV irradiated interstellar environments.

GRAPHICAL ABSTRACT

Acknowledgments

The authors thank Isabelle Couturier-Tamburelli (Aix-Marseille Université-PIIM, Marseille, FR), Murthy Gudipati (JPL, USA) and Benjamin Fleury (JPL, USA) for kindly sharing their experience in synthesising and handling of HC3N. Y. T. acknowledges financial support from the extra-[EU ERASMUS+ program (Academic Year 2019/2020)].

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by the Italian Space Agency (ASI, DC-VUM-2017-034, Grant n° 2019–3 U.O Life in Space) and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project ‘Astro-Chemical Origins’ (ACO).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.