Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 26, 1973 - Issue 5
237
Views
253
CrossRef citations to date
0
Altmetric
Original Articles

Theory of polar liquids

I. Dipolar hard spheres

, &
Pages 1199-1215 | Received 11 May 1973, Published online: 23 Aug 2006
 

Abstract

Two recent contributions to the statistical theory of polar fluids, namely the perturbation theory of Stell, Rasaiah and Narang (SRN) and the meanspherical-approximation (MSA) results of Wertheim, and of Nienhuis and Deutch, are compared and contrasted for the conceptually simple model of hard spheres, diameter R, with central point dipoles, of strength μ (dipolar hard spheres). It is shown that the MSA approach replaces correlation functions which enter correctly into the SRN theory by their low-density limits : to this extent it is unsatisfactory. On the other hand the MSA work does suggest reasons why the naive Padé approximant featuring in SRN theory may be expected to do reasonable justice to the physics of the problem. Numerical comparisons of the excess free-energy (as compared with non-polar hard spheres) as a function of reduced density, ρ* = ρR 3, are given at two temperatures, T* = 2 and T* = 0·25, where T* = kTR 32. Similar curves, for T* = 1 and T* = 0·5, are available from the authors. The gas-liquid (T*, ρ*)-phase boundary is located, near the critical point, on both theories, as are the vapour pressure curves. These are calculated using the Carnahan-Starling equation of state for hard spheres ; and critical comment is made in justification of employing this in the context of MSA results for the excess quantities. The two theories are found to have appreciably different numerical consequences.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.