Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 53, 1984 - Issue 3
25
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Improved bond-orbital calculations of rotation barriers and geometrical isomerism

&
Pages 615-630 | Received 09 Apr 1984, Accepted 18 May 1984, Published online: 22 Aug 2006
 

Abstract

Rotational barriers in 19 molecules possessing a single internal rotation angle around a B-N, C-C, C-N, C-O, N-N, N-O, O-O central bond and geometrical isomerism in 3 molecules possessing a N=N double bond have been studied ab initio by the improved bond-orbital method. The first approximation, where the chemical groups occurring in these molecules are described in terms of non-orthogonal SCF bond-orbitals constructed from energy-optimized bond hybrids and polarities, is improved in second order of perturbation theory by admitting single excitations from bonding to antibonding orbitals and accounting for induction including exchange (polarization and delocalization). The molecules studied possess 16 to 34 electrons and a variety of functional groups differing in their chemical structure (CH3, NH2, OH, NO, CHO, CH=CH2, NH= and some of their F-derivatives). The overall results obtained using a STO-3G basis, rigid rotation and experimental geometries, are close to experiment and to the corresponding MO-SCF calculations in the same basis, but individual energy components allow us to establish a clear correlation between barriers and chemical structure, grouping the 22 molecules into 4 classes. In the first class (CH3-X molecules and 1,2-difluoroethane) barriers are dominated by steric interactions (Pauli repulsions) which are sufficiently well described in first order. In the second class (N2H4, NH2OH, NH=NH and its fluoroderivatives, molecules all possessing lone pairs adjacent to the central bond) barriers are due to competition between first-order Pauli repulsion and characteristic geminal σ-σ* delocalization occurring in second order. In the third class (1,3-butadiene, glyoxal, formamide and formic acid, molecules possessing double bonds and/or π-lone pairs at both ends of the rotation axis) barriers are dominated by large π-π* vicinal delocalization. In the fourth class (HNO2, H2O2 and its fluoroderivatives, molecules presenting both previous structural features) barriers result from competition between all preceding effects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.