Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 69, 1990 - Issue 6
19
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Calculation of thermodynamic properties of dense fluid neon using statistical-mechanical perturbation theory

Part II: Results up to 6 GPa and equations of state

, &
Pages 1001-1009 | Received 14 Sep 1989, Accepted 01 Dec 1989, Published online: 23 Aug 2006
 

Abstract

The theory and potentials described in the preceding paper are used for the calculation of thermodynamic properties of fluid neon between 73 and 348 K and up to the melting line. A polynomial equation of state for correlating the densities between 73 and 323 K and between 30 MPa and 1 GPa is presented. The calculations have been extended up to 6 GPa and the performance of the EXP-6 effective pair potential and the HFD-C2, HFD-B and XC3 pure pair potentials is compared. The effect of the Axilrod-Teller many-body correction term on the pure pair potentials is studied. In the ranges 98-348 K and 0·6-6 GPa the density data are correlated by a MBWR equation of state, and a polynomial expression is given for the sound velocity in these ranges. The pressure and temperature dependences of the specific heat at constant volume are shown. A comparison is made between the experimental pVT and soundvelocity data of Kimura et al. at 295 K and up to 3·5 GPa and our calculations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.