Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 70, 1990 - Issue 1
164
Views
251
CrossRef citations to date
0
Altmetric
Original Articles

Percus-Yevick integral-equation theory for athermal hard-sphere chains

Part I: Equations of state

Pages 129-143 | Received 31 Jul 1989, Accepted 30 Dec 1989, Published online: 22 Aug 2006
 

Abstract

A theoretical method for the modelling of athermal freely jointed tangent hard-sphere chain fluids, of fixed length r, is developed based on a ‘particle-particle’ description of the chain system. This approach is based on the Percus-Yevick (PY) theory in the context of the particle-particle Ornstein-Zernike integral equation subject to some imposed connectivity constraints. Analytical expressions for the compressibility equations of state are derived for homonuclear chains, heteronuclear chains, blends or mixtures of homonuclear and heteronuclear chains, and homonuclear chains in a hard-sphere solvent. The PY compressibility equation of state for the athermal hard-sphere chain system is found to consist of (i) a non-bonded hard-sphere PY compressibility pressure contribution, and (ii) a PY bonding contribution due to chain formation. In the case of homonuclear chains the Percus-Yevick solution is found to yield excellent agreement with computer-simulation data reported in the literature. By replacing the PY hard-sphere compressibility pressure contribution with the Carnahan-Starling hard-sphere pressure, the accuracy of the PY bonding term for homonuclear chains is identified. We are, however, unable to determine the accuracy of the PY compressibility pressure of heteronuclear chains, chain mixtures and homonuclear chains in a hard-sphere solvent since computer-simulation data for these systems are not available.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.