Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 72, 1991 - Issue 5
56
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

A computer simulation study of cavities in the hard disc fluid and crystal

&
Pages 1015-1033 | Received 25 Jun 1990, Accepted 30 Aug 1990, Published online: 22 Aug 2006
 

Abstract

The number and size of the cavities in a hard disc fluid and crystal are calculated in a computer simulation experiment. A cavity is a region where there is sufficient space to insert another disc. In the higher-density fluid and in the crystal the number of cavities per disc, n c, closely follows the exact one-dimensional result n c = exp(-zpV/RT), where z is the density relative to close packing, over 40 orders of magnitude. The average size of the cavities, <ν>, varies by only 3·5 orders of magnitude in the same density range, and, to within about 20%, <ν> varies as <ν> = [σ/(pV/RT - 1)]2, where σ is the disc diameter. Across the freezing transition n c <ν> is exactly constant. When the crystal melts to a fluid the number of cavities increases by about 50% and their size decreases in proportion, but their surface-to-volume ratio only decreases by 5%, showing that they have a more compact shape in the fluid. Above one-half of the close-packed density the computed values of n c and <ν> are represented precisely by ln n c = 1 - pV/RT - F(z) and ln <ν> = ΔS/R - ln(N/V) + F(z), where ΔS is the entropy relative to the ideal gas. F(z) is exactly zero in one dimension, and we find empirically that in two dimensions F(z) = -0·25 + 2 ln z in the crystal and F(z) = -2·2 - 2 ln z in the dense fluid. The number of vacancies per disc, n v, in the crystal is measured and can be represented by n v = n c/[2(z - 0·75)]. At low density there is a large cavity that percolates. At z = 0·237 ± 0·003 there is equal probability of a cavity or a cluster percolating. The number of cavities reaches a maximum of one for every three discs at z = 0·38. Relations between cavity, cell and free volume theories are discussed empirically and theoretically.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.