Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 95, 1998 - Issue 1
1,924
Views
304
CrossRef citations to date
0
Altmetric
Original Articles

Effects of weak magnetic fields on free radical recombination reactions

, , , &
Pages 71-89 | Published online: 04 Mar 2011
 

The radical pair mechanism is used to elucidate how applied magnetic fields that are weaker in strength than typical hyperfine interactions can influence the yields and kinetics of recombination reactions of free radicals in solution. The so-called low field effect is shown to arise from coherent superpositions of degenerate electron-nuclear spin states in a spin-correlated radical pair in zero field. A weak applied magnetic field causes these (zero-quantum) coherences to oscillate, leading to coherent interconversion of singlet and triplet electronic states of the radical pair and hence changes in the yields of recombination products and of the free radicals that escape into solution. For singlet geminate radical pairs, the low field effect leads to a boost in the concentration of free radicals, which may be relevant in the context of in vivo biological effects of electromagnetic fields. Using analytical approaches in limiting cases, the maximum possible low field effects are calculated for a variety of radical pairs. Sizeable changes in reaction yields (∽20%) are found for almost any radical pair provided the spin-correlation persists long enough for significant evolution of the electron spins under the influence of the weak applied field. The conditions necessary for observing effects as large as ∽20% are discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.