Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 96, 1999 - Issue 4
482
Views
220
CrossRef citations to date
0
Altmetric
Original Articles

Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta

, &
Pages 529-547 | Published online: 04 Mar 2011
 

The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Møller—Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)]. For He2 CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 7.35 cm-1 (10.58 K), with an estimated complete basis set (CBS) limit of 7.40 cm-1 (10.65 K). The latter is smaller than the 'exact' well depth (Aziz, R. A., Janzen, A. R., and Moldover, M. R., 1995, Phys. Rev. Lett., 74, 1586) by about 0.2 cm-1 (0.35 K). The Ne2 well depth, computed with the CCSD(T)/d-aug-cc-pV6Z method, is 28.31 cm-1 and the estimated CBS limit is 28.4 cm-1, approximately 1 cm-1 smaller than the empirical potential of Aziz, R. A., and Slaman, M., J., 1989, Chem. Phys., 130, 187. Inclusion of core and core—valence correlation effects has a negligible effect on the Ne2 well depth, decreasing it by only 0.04 cm-1. For Ar2, CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 96.2 cm-1. The corresponding HFDID potential of Aziz, R. A., 1993, J. chem. Phys., 99, 4518 predicts of De of 99.7 cm-1. Inclusion of core and core-valence effects in Ar2 increases the well depth and decreases the discrepancy by approximately 1 cm-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.