360
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Dynamical System Modeling of Self-Regulated Systems Undergoing Multiple Excitations: First Order Differential Equation Approach

ORCID Icon, , , , , , & show all
 

Abstract

This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of a signal (e.g., heart rate) before, during, and after excitations taking the system out of its equilibrium (e.g., physical effort during cardiac stress testing). Such approach can be applied to a broad range of outcomes such as physiological processes in medicine and psychosocial processes in social sciences, and it allows to extract simple characteristics of the signal studied. The model is based on a first order linear differential equation with constant coefficients defined by three main parameters corresponding to the initial equilibrium value, the dynamic characteristic time, and the reaction to the excitation. Assuming the presence of interindividual variability (random effects) on these three parameters, we propose a two-step procedure to estimate them. We then compare the results of this analysis to several other estimation procedures in a simulation study that clarifies under which conditions parameters are accurately estimated. Finally, applications of this model are illustrated using cardiology data recorded during effort tests.

Article information

Conflict of Interest Disclosures: Each author signed a form for disclosure of potential conflicts of interest. No authors reported any financial or other conflicts of interest in relation to the work described.

Ethical Principles: The authors affirm having followed professional ethical guidelines in preparing this work. These guidelines include obtaining informed consent from human participants, maintaining ethical treatment and respect for the rights of human or animal participants, and ensuring the privacy of participants and their data, such as ensuring that individual participants cannot be identified in reported results or from publicly available original or archival data.

Funding: This work was supported by Grant IZSEZ0_183540 and 100019_166010 from the Swiss National Science Foundation (SNSF).

Role of the Funders/Sponsors: None of the funders or sponsors of this research had any role in the design and conduct of the study; collection, management, analysis, and interpretation of data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Acknowledgments: The authors would like to thank Dr Zhang and the three anonymous reviewers for their comments on prior versions of this manuscript. The ideas and opinions expressed herein are those of the authors alone, and endorsement by the authors’ institutions or the Swiss National Science Foundation is not intended and should not be inferred.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.