248
Views
18
CrossRef citations to date
0
Altmetric
Genetics/ Molecular Biology

Intragenomic nuclear RNA variation in a cryptic Amanita taxon

, & ORCID Icon
Pages 93-103 | Received 13 May 2017, Accepted 10 Jan 2018, Published online: 04 Jun 2018
 

ABSTRACT

Amanita cf. lavendula collections in eastern North America, Mexico, and Costa Rica were found to consist of four cryptic taxa, one of which exhibited consistently unreadable nuclear rDNA ITS1-5.8S-ITS2 (fungal barcode) sequences after ITS1 base 130. This taxon is designated here as Amanita cf. lavendula taxon 1. ITS sequences from dikaryotic basidiomata were cloned, but sequences recovered from cloning did not segregate into distinct haplotypes. Rather, there was a mix of haplotypes that varied among themselves predominantly at 28 ITS positions. Analysis of each of these 28 variable bases showed predominantly two alternate bases at each position. Based on these findings and additional sequence data from the nuclear rDNA 28S, RNA polymerase II subunit 2 (RPB2) and mitochondrial rDNA small subunit (SSU) and 23S genes, we speculate that taxon 1 represents an initial hybridization event between two divergent taxa followed by failure of the ribosomal repeat to homogenize. Homogenization failure may be a result of repeated hybridization between divergent internal transcribed spacer (ITS) types with inadequate time for concerted evolution of the ribosomal repeat or, alternately, a complete failure of the ribosomal homogenization process. To our knowledge, this finding represents the first report of a geographically widespread taxon (Canada, eastern USA, Costa Rica) with apparent homogenization failure across all collections. Findings such as these have implications for fungal barcoding efforts and the application of fungal barcodes in identifying environmental sequences.

ACKNOWLEDGMENTS

We thank the University of Tennessee Genomics Core for their help. We also thank three anonymous reviewers for comments and suggestions.

Supplementary material

Supplemental data for this article can be accessed on the publisher’s Web site.

Additional information

Funding

Research was supported by National Science Foundation grant DEB 144974 to R.H.P. and K.W.H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.