468
Views
17
CrossRef citations to date
0
Altmetric
Miscellany

Vegetation and peat characteristics of restiad bogs on Chatham Island (Rekohu), New Zealand

, &
Pages 293-312 | Received 18 Jun 2003, Accepted 01 Oct 2003, Published online: 17 Mar 2010
 

Abstract

Restiad bogs dominated by Sporadanthus traversii on Chatham Island, New Zealand, were sampled to correlate vegetation patterns and peat properties, and to compare with restiad systems dominated by Sporadanthus ferrugineus and Empodisma minus in the Waikato region, North Island, New Zealand. Classification and ordination resulted in five groups that reflected a disturbance gradient. The largest S. traversii group, which comprised plots from central, relatively intact bogs, had the lowest levels of total nitrogen (mean 1.20 mg cm‐3), total phosphorus (mean 0.057 mg cm‐3), total potassium (mean 0.083 mg cm‐3), and available phosphorus (mean 18.6 (Ag cm‐3). Modification by drainage, stock, and fires resulted in a decline of S. traversii and an increase of Gleichenia dicarpa fern cover, together with elevated peat nutrient levels and higher bulk density. Compared with peat dominated by Sporadanthus ferrugineus or Empodisma minus in relatively unmodified Waikato restiad bogs, Chatham Island peat under S. traversii has significantly higher total potassium, total nitrogen, available phosphorus, bulk density, and von Post decomposition indices, and significantly lower pH. Sporadanthus traversii and Empodisma minus have similar ecological roles in restiad bog development, occupying a relatively wide nutrient range, and regenerating readily from seed after fire. Despite differences in root morphology, S. traversii and E. minus are the major peat formers in raised restiad bogs on Chatham Island and in Waikato, respectively, and could be regarded as ecological equivalents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.