380
Views
6
CrossRef citations to date
0
Altmetric
Technical Papers

Oxide-Metal Ratio Dependence of Central Void Formation of Mixed Oxide Fuel Irradiated in Fast Reactors

ORCID Icon, , &
Pages 83-95 | Received 01 Feb 2017, Accepted 30 Mar 2017, Published online: 16 Jun 2017
 

Abstract

Based on thermal computation results obtained using an irradiation behavior analysis code, we have evaluated the effect of oxide-metal ratio on fuel restructuring from the results of postirradiation examinations for the B14 irradiation test fuel, which was a mixed oxide fuel and was irradiated in the experimental reactor Joyo. The thermal computation results showed that fuel restructuring in the stoichiometric oxide fuel was accelerated, though the fuel temperature in the stoichiometric oxide fuel was evaluated as lower than that of the hypo-stoichiometric one. We explained this behavior as follows: first, the fuel temperature decreased due to the high thermal conductivity at stoichiometry; second, the pore migration velocity increased due to the increase in vapor pressure caused by the high vapor pressure of UO3, which was derived from the high oxygen potential at stoichiometry. In addition, our results indicated that the central void diameter strongly depended on not only fuel temperature, but also vapor pressure.

Acknowledgments

The authors would like to express their appreciation to Dr. Saito of JAEA for his fruitful advice.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.