261
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

Electrochemical Separation of Lanthanum Oxide in Molten FLiNaK Salt

, , &
Pages 1769-1777 | Received 14 Jan 2020, Accepted 16 Apr 2020, Published online: 09 Jul 2020
 

Abstract

The electrochemical behavior of La2O3 was investigated in LiF-NaF-KF (FLiNaK, 46.5-11.5-42.0 mol %) eutectic at 700°C. In the electrochemical tests, two kinds of working electrodes, i.e., tungsten and graphite, were utilized. The present study showed that La3+ ions can be deposited in the form of La metal on a tungsten cathode or LaC2 on a graphite cathode, and O2− can be removed in the form of CO/CO2 using a graphite anode. Therefore, a graphite or tungsten cathode (for La3+ removal), and a graphite anode (for O2− removal) are good options to remove both La3+ and O2− from the molten salts. In addition to the electrochemical tests, inductively coupled plasma mass spectroscopy analysis was used to measure the concentration of the lanthanum element and X-ray powder diffraction techniques were applied to determine the chemical forms of lanthanum in the salt. It turned out that the solubility of La3+ in the molten FLiNaK was 6.81 × 10−4 wt% at 700°C and LaOF was formed by the chemical reactions between La2O3 and alkali fluorides during the heating process.

Acknowledgments

This work was financially supported by NEUP Award Number DE-NE0008306. The authors appreciate Weiqian Zhuo’s assistance on the XRD analyses.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.