286
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

Lower-Weight Landmine Detection Under Various Buried Conditions Based on PGNAA and Machine Learning

, , , , , , , & ORCID Icon show all
Pages 1847-1857 | Received 22 Jan 2022, Accepted 04 May 2022, Published online: 11 Jul 2022
 

Abstract

The performance of a prompt gamma neutron activation analysis (PGNAA) system for lower-weight landmine detection is investigated in this study. A total of 2880 characteristic gamma-ray spectra of 10 buried samples (five explosives and five nonexplosives), within a weight range of 0.01 to 10 kg and a hidden depth of 2.5 to 15 cm, under 0%, 10%, and 20% soil moisture conditions, were generated using Monte Carlo N-Particle Code 5 (MCNP5). The conventional characteristic peak analysis method was not applicable to lower-weight sample detection. The discrimination accuracy was acceptable only under 0% soil moisture when explosives exceeded 2 kg with the discrimination accuracy exceeding 80%. Four machine learning models, including radial basis function (RBF) neural network, fully connected neural network, XGBoost, and LightGBM, were used to perform whole-spectrum analysis, and better performance was demonstrated. The discrimination accuracy exceeded 90% in most cases, and the RBF neural network was demonstrated to be the best performance (96.6% for explosives and 95.1% for nonexplosives). All four of these models were insensitive to soil moisture. The minimum detectable weight of 0.02 kg for the simulation data provided valuable reference for experimental applications. These results indicate that machine learning was an effective method for lower-weight landmine detection using PGNAA under complicated conditions.

Acknowledgments

This work was supported by the Sichuan Science and Technology Program (2020YJ0313), National Natural Science Foundation of China (11575121), the Fundamental Research Funds for the Central Universities, and the International Visiting Program for Excellent Young Scholars of Sichuan University.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.