311
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

Explanation of Deep Learning–Based Radioisotope Identifier for Plastic Scintillation Detector

, & ORCID Icon
Pages 1-14 | Received 15 Feb 2022, Accepted 21 Jun 2022, Published online: 23 Aug 2022
 

Abstract

Radioisotope identification (RIID) is a representative application of deep learning for radiation measurements. Deep learning-based RIID models have been implemented in various types of radiation detectors; however, very few of these models have been interpreted using explainable artificial intelligence (XAI) methods. This paper presents an explanation of a deep learning–based RIID model for a plastic scintillation detector. The RIID task is defined as a multilabel binary classification problem, and the dataset is generated using a random sampling procedure. The identification performance is verified using experimental data. The experimental results demonstrate that the performance of the RIID models increased with the increase in the total counts of the dataset. Additionally, XAI methods are implemented, and their explanatory performance is verified for the spectral input. The domain knowledge of RIID for the plastic scintillation detector is that patterns near the Compton edge can be used as evidence for the existence of radioisotopes. Among the implemented XAI methods, integrated gradient and layerwise relevance propagation exhibited concurrence with the domain knowledge, with the Shapley value explanation method presenting the most reliable results.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Ministry of Oceans and Fisheries (KIMST project number 20200611).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.