76
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Modeling Geologic Waste Repository Systems Below Residual Saturation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1578-1592 | Received 02 Apr 2023, Accepted 17 Sep 2023, Published online: 24 Oct 2023
 

Abstract

The heat generated by high-level radioactive waste can pose numerical and physical challenges to subsurface flow and transport simulators if the liquid water content in a region near the waste package approaches residual saturation due to evaporation. Here, residual saturation is the fraction of the pore space occupied by liquid water when the hydraulic connectivity through a porous medium is lost, preventing the flow of liquid water. While conventional capillary pressure models represent residual saturation using asymptotically large values of capillary pressure, here, residual saturation is effectively modeled as a tortuosity effect alone. Treating the residual fluid as primarily dead-end pores and adsorbed films, relative permeability is independent of capillary pressure below residual saturation. To test this approach, PFLOTRAN is then used to simulate thermal-hydrological conditions resulting from direct disposal of a dual-purpose canister in unsaturated alluvium using both conventional asymptotic and revised, smooth models. While the two models have comparable results over 100 000 years, the number of flow steps required is reduced by approximately 94%.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under contract number DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. This article was co-authored by staff from UT-Battelle, LLC under contract number DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.