370
Views
7
CrossRef citations to date
0
Altmetric
Technical Papers

Convergence Studies on Nonlinear Coarse-Mesh Finite Difference Accelerations for Neutron Transport Analysis

&
Pages 136-149 | Received 19 Jan 2018, Accepted 07 Apr 2018, Published online: 21 May 2018
 

Abstract

Application of partial current–based coarse-mesh finite difference (pCMFD) acceleration to a one-node scheme is devised for stability enhancement of the parallel neutron transport calculation algorithm. Conventional one-node coarse-mesh finite difference (CMFD) allows parallel algorithms to be more tractable than two-node CMFD, but it has an inherent stability issue for some problems. In order to overcome this issue, pCMFD is modified to be fitted into the one-node scheme and is tested for both sequential and parallel calculations. The superior stability of the one-node pCMFD is shown by comparing results from analytic and numerical approaches. To investigate the convergence behavior of the acceleration methods in an analytic way, Fourier analysis is applied to an infinite homogeneous slab reactor configuration with the monoenergetic neutron flux assumption, and the spectral radius is calculated as a convergence factor. This paper carefully describes the process of the Fourier analysis on the parallel algorithm for neutron transport and compares it to that of the conventional sequential algorithm.

Acknowledgments

This work was supported by the National Research Foundation of Korea grant NRF-2016R1A5A1013919 funded by the Korean government.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.