218
Views
4
CrossRef citations to date
0
Altmetric
Technical Papers

The Discontinuous Asymptotic Telegrapher’s Equation (P1) Approximation

, &
Pages 189-207 | Received 05 Feb 2018, Accepted 09 Jul 2018, Published online: 05 Oct 2018
 

Abstract

Modeling the propagation of radiative heat waves in optically thick material using a diffusive approximation is a well-known problem. In optically thin material, classic methods, such as classic diffusion or classic , yield the wrong heat wave propagation behavior, and higher-order approximation might be required, making the solution more difficult to obtain. The asymptotic approximation [Heizler, Nucl. Sci. Eng., Vol. 166, p. 17 (2010)] yields the correct particle velocity but fails to model the correct behavior in highly anisotropic media, such as problems that involve a sharp boundary between media or strong sources. However, the solution for the two-region Milne problem of two adjacent half-spaces divided by a sharp boundary yields a discontinuity in the asymptotic solutions that makes it possible to solve steady-state problems, especially in neutronics. In this work we expand the time-dependent asymptotic approximation to a highly anisotropic medium using the discontinuity jump conditions of the energy density, yielding a modified discontinuous equation in general geometry. We introduce numerical solutions for two fundamental benchmarks in plane symmetry. The results thus obtained are more accurate than those attained by other methods, such as Flux Limiters or Variable Eddington Factors.

Acknowledgments

We acknowledge the support of the PAZY Foundation under grant number 61139927. The authors thank Roee Kirschenzweig for the use of the IMC code for radiative problems, Stanislav Burov, and the anonymous referees for their valuable comments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.