274
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

Burnup Performance of CANDLE Burning Reactor Using Sodium Coolant

, &
Pages 1128-1142 | Received 18 Oct 2019, Accepted 26 May 2020, Published online: 13 Jul 2020
 

Abstract

The CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy production) reactor concept was proposed to overcome the disadvantages of current reactor technologies. In this study, a Monte Carlo–based procedure is developed for quantitative comparison of burnup performance and neutronic characteristics between lead bismuth eutectic (LBE)–cooled and sodium-cooled CANDLE reactors to demonstrate the possibility of using sodium coolant in a small CANDLE burning reactor. In this procedure, a neutron transport equation is solved using the MVP code with the JENDL-4.0 library, and the burnup calculation is solved using the MVP-BURN code with the detailed burnup chain. To simulate the fuel-shuffling process, an auxiliary code was developed using Python. The results show that for the same fuel pin design and core volume, changing the coolant from LBE to sodium reduced the keff by 2.3% and the average discharge burnup by 15.6%, due to the softer neutron spectrum and larger neutron leakage fraction. It would be necessary to increase the fuel volume and core radius approximately 38% and 17%, respectively, for criticality in a sodium-cooled CANDLE core.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.