503
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

A High-Assay Low-Enriched Uranium Fuel Transportation Concept

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 279-299 | Received 28 May 2020, Accepted 24 Jul 2020, Published online: 24 Sep 2020
 

Abstract

The uranium 235U enrichment commonly used in fuel production for U.S. light water nuclear reactors typically does not exceed 5 wt%. In contrast, many of the currently investigated advanced reactor concepts demand fuel with higher enrichments. This includes high-assay low-enriched uranium (HALEU), characterized by a 235U enrichment of 5 to 20 wt%. The necessity of HALEU transportation in the fuel production cycle leads to new challenges caused by various technical and regulatory hurdles. Current U.S. Nuclear Regulatory Commission–approved transportation package designs for UF6 with enrichments above 5 wt% provide relatively small payloads [≤116 kg (250 lb)]. Furthermore, in accordance with 10 CFR 71.55, package design activities for fissile material enriched above 5 wt% need to consider water infiltration in the containment as part of the criticality safety evaluations. This study presents a transportation package concept for HALEU advanced nuclear reactor fuel with a significantly higher payload of up to 376 kg (830 lb) of fissile material per package and up to 1881 kg (4149 lb) of HALEU per legal weight truck. The anticipated chemical form of the transported material is UO2 downblended from available highly enriched uranium. The concept utilizes a combination of existing transportation packaging, 18 inner canisters, and a novel basket design that includes a borated aluminum flux trap. Criticality and shielding evaluations; fundamental structural, confinement, and thermal assessments; and studies on package operations are presented. The results of this study build significant confidence in the technical feasibility of a high-capacity HALEU transportation package concept while demonstrating the concept’s potential to meet U.S. regulatory requirements.

Acknowledgments

This material is based upon work supported by DOE Office of Nuclear Technology Research and Development (NE-4) funding. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

The authors gratefully acknowledge the support to this project provided by the staff of ORNL, specifically Bret D. Brickner, William B. J. Marshall, and Rose A. Montgomery, along with former ORNL staff member John M. Scaglione. This work was supported by the DOE Office of Nuclear Technology Research and Development [DE-AC07-05ID14517].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.