216
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

EBR-II MOX Fuel Characterization Enabling ARES Phase I Testing

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1845-1872 | Received 20 Aug 2022, Accepted 05 Dec 2022, Published online: 25 Jan 2023
 

Abstract

Pretransient characterization was performed for the Experimental Breeder Reactor II (EBR-II) mixed-oxide (MOX) fuel pellets from the SPA-2/-2B Operational Reliability Testing collaboration between Japan and the United States. Continued collaboration under the Advanced Reactor Experiments for Sodium Fast Reactor Fuels project will investigate the transient performance of these rods in the Transient Reactor Test facility at Idaho National Laboratory in the MOXTOP-THOR experiment. The results will fill a gap in existing transient performance data for MOX as these rods have a peak burnup of 14.3 at. % (~134.4 GWd/t) in the EBR-II. Fuel pellet properties were gathered from available resources and their irradiation and decay history evaluated. Further reactor physics calculations were performed to support the experiment design, reactor operations, and safety analyses necessary to enable the programmatic success of this effort. Of the three irradiated fuel pins, two will undergo transient testing, and all three will undergo post-irradiation examination. The methodology development and analysis activities utilized in this paper enable current experiment design work and provide the pathway through which measured data of this type can be further evaluated.

Acknowledgments

This research made use of the resources of the HPC at INL, which is supported by the Office of Nuclear Energy of the DOE and the Nuclear Science User Facilities under contract DE-AC07-05ID14517.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.