219
Views
13
CrossRef citations to date
0
Altmetric
Articles

A partial derivatives approach for estimation of the viscosity Arrhenius temperature in N,N-dimethylformamide + 1,4-dioxane binary fluid mixtures at temperatures from 298.15 K to 318.15 K

, , , , , , & show all
Pages 615-631 | Received 10 Sep 2015, Accepted 05 Jan 2016, Published online: 03 Feb 2016
 

ABSTRACT

Excess properties calculated from the literature values of experimental density and viscosity in N,N-dimethylformamide (DMF) + 1,4-dioxane (DO) fluid binary mixtures (from 303.15 to 318.15) K can lead us to test the different correlation equations as well as their corresponding relative functions. Inspection of the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ∆H* shows very close values; here we can define partial molar activation energy Ea1 and Ea2 for DMF and DO, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows the existence of the primary distinct behaviours separated by particular mole fractions in DMF. In addition, we add that the correlation between Arrhenius parameters reveals interesting Arrhenius temperature (TA), which is closely related to the vaporisation temperature in the liquid–vapour equilibrium; moreover, the limiting corresponding partial molar properties allow us to estimate the boiling points of the pure components.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

We thank Deanship of Scientific Research and research units of Science College in University of Dammam, Saudi Arabia, for supporting this work and funding this project [grant number 2015060].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.