231
Views
41
CrossRef citations to date
0
Altmetric
Articles

Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations

, , &
Pages 358-385 | Received 30 Jun 2016, Accepted 25 Jul 2016, Published online: 08 Aug 2016
 

ABSTRACT

Gas-to-ionic liquid partition coefficient data have been assembled from the published chemical literature for solutes dissolved in 1-allyl-3-methylimidazolium dicyanamide, 1-allyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide, octyltriethylammonium bis(trifluomethyl-sulphonyl)imide, tributylethylphosphonium diethylphosphate and 1-butyl-1-methylmorpholinium tricyanomethanide. The published experimental data were converted to water-to-ionic liquid partition coefficients using standard thermodynamic relationships. Both sets of partition coefficients were correlated with the Abraham solvation parameter model. The derived Abraham model correlations described the observed partition coefficient data to within 0.13 log units. Cation-specific equation coefficients were calculated for each of the cations present in the five ionic liquid solvents studied. The calculated cation-specific equation coefficients can be combined with previously reported ion-specific equation coefficients for 19 different anions to yield Abraham model correlations for predicting the partitioning the behaviour of solutes in 76 different anhydrous ionic liquid solvents.

Acknowledgements

Bihan Jiang and Melissa Horton thank the University of North Texas’s Texas Academy of Math and Science (TAMS) program for a summer research award.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.