166
Views
0
CrossRef citations to date
0
Altmetric
Articles

The impact of the modified Poisson–Boltzmann model on protein bound to a lipid coated silicon nanowire field effect transistor biosensor in an electrolyte environment

, &
Pages 371-381 | Received 09 Nov 2017, Accepted 08 Apr 2018, Published online: 02 May 2018
 

ABSTRACT

The aim of this work was to analyse the electrostatic potential profile, various effects of electrolyte concentrations, and the influences of surface charge on a protein bound to a lipid coated Silicon nanowire field effect transistor (Si-NW FET) biosensor by implementing the modified PoissonBoltzmann (MPB) model. In this work, we modelled a lipid monolayer-coated Si-NW FET for the sensing of proteins, which consisted of variable amounts of aspartic acid. The electrostatic potential profile, protein charge distributions, the response to various electrolyte concentration, and the impacts of various surface charge were studied by implementing the MPB model with the Si-NW FET biosensor. Additionally, a comparison between the use of the MPB and the PoissonBoltzmann model in studying the effects of various surface charges was carried out. Taken together, it was found that the MPB model showed a higher resolution in studying the Si-NW FET biosensor model when higher concentrations and surface charges were administered.

Acknowledgements

The authors wish to acknowledge the facilities and support provided by the Management of PSG College of Technology, Coimbatore, India.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.