49
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of processing conditions and fine powder loading on real and electroactive surface areas of porous nickel manufactured by lost carbonate sintering

& ORCID Icon
Pages 537-547 | Received 14 Feb 2023, Accepted 11 Apr 2023, Published online: 24 Apr 2023
 

ABSTRACT

The effects of five key processing parameters on the real and electroactive surface areas of porous nickel samples produced by the Lost Carbonate Sintering (LCS) process have been investigated systematically. The specific real and electroactive surface areas of the LCS porous Ni samples are 500–1600 cm−1 and 80–115 cm−1. Pore size, compacting pressure and sintering temperature have no significant effect on the surface areas. Porosity has no effect on the gravimetric real surface area, but a higher porosity leads to a lower volumetric real surface area and a higher electroactive surface area. Metal particle size has a huge effect on the surface areas of the LCS porous metal. An intermediate amount of fine Ni powder results in the highest real surface area, approximately 70% higher than the samples produced with coarse Ni powder. Samples produced with fine Ni powder can increase the electroactive surface area by up to 100%.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.