47
Views
28
CrossRef citations to date
0
Altmetric
Research Article

In vitro Studies Indicate that Acid Catalysed Generation of N-Nitrosocompounds from Dietary Nitrate Will be Maximal at the Gastro-oesophageal Junction and Cardia

Pages 253-261 | Published online: 08 Jul 2009
 

Abstract

Background: Dietary nitrate increases saliva nitrite levels and swallowed saliva is the main source of nitrite entering the acidic stomach. In acidic gastric juice, this nitrite can generate potentially carcinogenic N-nitrosocompounds. However, ascorbic acid secreted by the gastric mucosa can prevent nitrosation by converting the nitrite to nitric oxide. Methods: To study the potential for N-nitrosocompound formation in a model simulating salivary nitrite entering the acidic stomach and the ability of ascorbic acid to inhibit the process. Concentrations of ascorbic acid, total vitamin C, nitrite, nitrosomorpholine, oxygen and nitric oxide were monitored during the experiments. Results: The delivery of nitrite into HCl containing thiocyanate resulted in nitrosation of morpholine, with the rate of nitrosation being greatest at pH 2.5. Under anaerobic conditions, ascorbic acid converted the nitrite to nitric oxide and prevented nitrosation. However, in the presence of dissolved air, the ascorbic acid was ineffective at preventing nitrosation. This was due to the nitric oxide combining with oxygen to reform nitrite and this recycling of nitrite depleting the available ascorbic acid. Further studies indicated that the rate of consumption of ascorbic acid by nitrite added to natural human gastric juice (pH 1.5) was extremely rapid with 200 μmol/l nitrite consumed 500 μmol/l ascorbic acid within 10 s. Conclusions: The rapid consumption of ascorbic acid in acidic gastric juice by nitrite in swallowed saliva indicates that the potential for acid nitrosation will be maximal at the GO junction and cardia where nitrite first encounters acidic gastric juice. The high incidence of mutagenesis and neoplasia at this anatomical location may be due to acid nitrosation arising from dietary nitrate.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.