214
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Role of microRNA-223 in the regulation of poly(ADP-ribose) polymerase in pediatric patients with Crohn’s disease

ORCID Icon, , , , , , , , , , , & ORCID Icon show all
Pages 1066-1073 | Received 02 Jun 2018, Accepted 04 Jul 2018, Published online: 09 Oct 2018
 

Abstract

Objectives: Crohn’s disease (CD) is a multifactorial disease, characterized by oxidant-induced tissue injury with a possible activation of poly(ADP-ribose) polymerase (PARP)-1. MicroRNAs (miRs) can offer a potential link between the genetic susceptibility, environmental and immunologic factors in the pathogenesis of CD. Previously, PARP-1 was identified as a direct target gene of miR-223 in an epithelial cell line. Our aim was to examine PARP activation and miR-223 expression in colonic biopsies of pediatric CD. To support our in vivo findings, the effect of lipopolysaccharide (LPS) on same parameters was examined in HT-29 colonic epithelial cell line.

Methods: Colonic biopsies were taken from patients with macroscopically inflamed and intact mucosa with CD and controls. LPS treated HT-29 cells served as our in vitro model. To analyze the PARP-1 expression real-time PCR, Western blot and immunohistochemical analyses were used. PARP-1 enzymatic activity was assessed on the basis of poly(ADP-ribosyl)ated proteins. Expression of miR-223 was examined by real-time PCR.

Results: PARP-1 mRNA and miR-223 expression was significantly elevated, however, the amount of PARP-1 protein and poly(ADP-ribose) was reduced in pediatric CD compared to controls. LPS incubation did not affect the expression of PARP-1 mRNA, however, decreased miR-223 expression, and enhanced PARP-1 activity.

Conclusions: In our study, we showed that the expression of miR-223 is up-regulated and poly(ADP-ribosyl)ation is reduced in pediatric patients with CD. Moreover, we confirmed their opposite change in LPS treated epithelial cells, too. These data suggest that the hypofunctionality of PARP-1 may play a potential role in the pathomechanism of CD.

Disclosure statement

The authors have no competing interests. I declare that neither the manuscript nor any part of its essential substance is submitted to another scientific journal. The manuscript was approved by all authors.

Additional information

Funding

This work was supported by grants OTKA-PD113022 to Eszter M. Horváth. Supported by the ÚNKP-16-3-III New National Excellence Program of the Ministry of Human Capacities (Hungarian government).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.