252
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Gastrin secretion in normal subjects and diabetes patients is inhibited by glucagon-like peptide 1: a role in the gastric side effects of GLP-1-derived drugs?

, &
Pages 1448-1451 | Received 20 Sep 2019, Accepted 04 Nov 2019, Published online: 14 Nov 2019
 

Abstract

Background: Randomized and controlled trials of glucagon-like peptide-1 (GLP-1) derived drugs have shown that the most frequent adverse symptoms are gastrointestinal. Some of the side effects such as dyspepsia, nausea and upper abdominal pain may well be of gastric origin. Since the antral hormone gastrin regulates gastric secretion of acid and enzymes and contributes to the regulation of gastric motility, we examined the effect of GLP-1 on the secretion of gastrin in normal subjects and diabetes patients.

Method: Plasma was sampled from ten healthy subjects and ten patients with diabetes mellitus type 1 with glucose clamped between 6 and 9 mM. GLP-1 or saline were infused for 4 h during and after a meal. Plasma concentrations of gastrin and GLP-1 were measured using specific radioimmunoassays.

Results: Basal plasma concentrations of gastrin were similar in controls and patients. After the meal, the gastrin concentrations rose significantly during saline infusion, whereas the GLP-1 infusion suppressed the secretion of gastrin significantly, most pronounced in the diabetes patients.

Conclusions: The results show that GLP-1 infusion suppresses the postprandial secretion of gastrin in normal subjects and even more so in the diabetes patients. The results may therefore shed further light on the upper gastrointestinal side effects of GLP-1-derived drugs in diabetic patients.

Acknowledgements

The skillful and patient secretarial assistance of Connie Bundgaard, and the skillful technical assistance of Alice von der Lieth are gratefully acknowledged.

Disclosure statement

F.K.K. has served on advisory panels and as consultant to and/or received research support from Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Gubra, MSD/Merck, Novo Nordisk, Sanofi, and Zealand Pharma.

Additional information

Funding

This study was supported by the Danish State Biotechnology Center for Cellular Communication at Rigshospitalet, Copenhagen.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.