178
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Interferon lambda 4 genotype and pathway in alcoholic hepatitis

, , , , , , & show all
Pages 304-311 | Received 19 Aug 2020, Accepted 06 Jan 2021, Published online: 19 Feb 2021
 

Abstract

Objectives

Single nucleotide polymorphisms within the interferon lambda 4 (IFNL4) gene influence liver inflammation and fibrosis in chronic liver disease. We investigated whether this is also the case during acute liver disease, alcoholic hepatitis. We, therefore, related variants within the IFNL4 gene to the clinical course of acute alcoholic hepatitis, and characterized the activation state of the IFN lambda system in these patients.

Methods

In this pilot study, 58 patients with alcoholic hepatitis were genotyped for the rs368234815IFNL4 single nucleotide polymorphism (deltaG, deltaG/TT: IFN lambda 4 positive, TT/TT: IFN lambda 4 negative). The genotypes were related to mortality, infection and inflammation and expression of the IFNL receptor 1 and IFN inducible genes were measured in liver and peripheral leukocytes.

Results

Amongst the alcoholic hepatitis patients who died, the IFN negative patients live longer after diagnosis, and also the IFN negative patients tended to have an overall short-term survival benefit compared to IFN lambda positive patients (p = .058). The IFN lambda 4 negative patients at diagnosis had fewer circulating monocytes and lower plasma soluble CD163. The patients with alcoholic hepatitis had reduced expression of the IFNL receptor 1in both liver and blood compared with healthy controls. In blood, the expression of IFN stimulated genes was lower than in healthy controls and most so in the patients, who died.

Conclusions

The IFN lambda 4 pathway seems involved in the acute disease processes of alcoholic hepatitis and patients without IFN lambda expression seem to have a short-term survival benefit.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Aarhus Universitets Forskningsfond (PhD scholarship).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.