273
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Analysis and identification of ferroptosis-related genes in ulcerative colitis

, , &
Pages 1422-1433 | Received 06 Jun 2023, Accepted 21 Jul 2023, Published online: 02 Aug 2023
 

Abstract

Background

Previous studies have shown that ferroptosis is associated with the pathogenesis of ulcerative colitis (UC). Therefore, this study aimed to identify key ferroptosis-related genes (FRGs) associated with the diagnosis of UC.

Methods

UC-related expression datasets were downloaded from the Gene Expression Omnibus (GEO) database. First, Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify UC-related genes (UCRGs). Differentially expressed genes (DEGs) between normal and UC groups were screened in GSE87466, and DEGs were subjected to an intersection analysis with FRGs and UCRGs to obtain ferroptosis-related DEGs (FR DEGs). Then a protein-protein interaction (PPI) network was constructed for FR DEGs. The hub genes were extracted based on the degree, Maximum Neighborhood Component (MNC), closeness, and Maximal Clique Centrality (MCC). Biomarkers with diagnostic values were screened by support vector machine (SVM) and the least absolute shrinkage and selection operator (LASSO) algorithms. Next, the infiltration of immune cells was compared between UC and normal groups, and the correlation between different immune cells and diagnostic genes was analyzed. The biological functions, classical pathways, and intermolecular interaction networks of diagnostic genes were characterized utilizing ingenuity pathway analysis (IPA). Finally, a TF-mRNA network was constructed and potential small-molecule compounds were screened.

Results

Thirty-six FR DEGs were obtained, and these were enriched in biological processes such as positive regulation of cytokine production, cytokine-mediated signalling pathway, long-chain fatty acid-CoA ligase activity, etc. Among 18 hub genes, five genes (ALOX5, TIMP1, TNFAIP3, SOCS1, DUOX2) were captured with diagnostic values for UC, and they displayed significant differences between UC and normal groups. Sixteen immune cell infiltrates were significantly different between UC and normal groups, such as activated dendritic cells and resting dendritic cells. TNFAIP3 and ALOX5 were positively correlated with neutrophils, and TIMP1, SOCS1, ALOX5, and DUOX2 were negatively correlated with M2 macrophages. IPA showed that diagnostic genes were related to 43 function modules and activated 17 pathways. The constructed TF-mRNA regulatory network comprised three diagnostic genes and 17 differentially expressed TFs. Potential small-molecule compounds including helveticoside and cymarin were identified.

Conclusion

Our findings yielded several promising FRGs for UC, providing a scientific reference for further studies on the pathogenesis of UC.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by the Science and Technology Fund Project of Guizhou Provincial Health Commission (grant no. gzwkj2022-052).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.