5
Views
31
CrossRef citations to date
0
Altmetric
Articles

Intestinal Oxalate and Calcium Absorption in Recurrent Renal Stone Formers and Healthy Subjects

, , &
Pages 55-59 | Published online: 31 Mar 2016
 

Abstract

The fractional intestinal absorption of oxalate and calcium was investigated hy isotope techniques in 20 normal subjects and in 12 idiopathic calcium oxalate stone formers. The greatest amount of 14C-oxalate was excreted during the first six hour period in controls as well as in stone formers. The stone formers had a greater intestinal uptake of oxalate (11±5.1%) than the controls (6.2±3.7%; p<0.01). There was no significant relationship between the fractional absorption of oxalate and the total urinary oxalate excretion. The stone formers also had a higher fractional uptake of calcium compared to the controls (55±11% vs. 47±9.1%; p<0.05). There was a positive relationship (r=0.47) between the urinary excretions of calcium and oxalate in the stone formers. During these conditions no correlation could be demonstrated between the fractional absorptions of oxalate and calcium, neither in the stone formers nor in the controls. In conclusion, patients with recurrent formation of calcium oxalate containing stones appear to have an enhanced intestinal uptake of both oxalate and calcium. This disturbance could be of primary pathogenic importance for their stone forming propensity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.