147
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effects of symbiosis with Rhizobium fredii on transport of fixed nitrogen in the xylem of soybean plants

, &
Pages 885-892 | Received 20 Jan 2000, Accepted 03 Aug 2000, Published online: 04 Jan 2012
 

Abstract

An experiment was conducted to identify the main nitrogenous compound transported in the xylem sap of soybean plants nodulated with Rhizobium fredii. Soybean (Glycine max L. Merr.) cultivars, wild type Bragg (nod+, fix+) and its nitrate tolerant, hypernodulating mutant ntsll16 (nod++, fix+) were used for this experiment. These soybean plants were inoculated with a slowgrowing rhizobium, Bradyrhizobium japonicum USDAllO or fast-growing rhizobia consisting of a mixture of R. fredii USDA191, USDA193, and USDA-194 and grown in a phytotron under natural light and controlled temperature conditions. Xylem sap was collected from Bragg and ntsll16 plants at the flowering and pod elongation stages. Acetylene reduction activity per plant or per nodule weight was not different between soybean lines and inoculums. The composition of the nitrogenous compounds in the xylem sap was compared between the symbionts, with B. japonicum and R. fredii. At the flowering stage, ureide-N and amide-N accounted for 53 to 70% and 20 to 27% respectively of the total N in the sap collected from the plants inoculated either with B. japonicum or R. fredii. At the pod elongation stage, ureide-N and amide-N accounted for 74 to 85%, and 7 to 19% of total sap N. With the growth of the soybean plants, the ratio of ureide-N in the xylem sap increased. These results suggest that in the case of wild soybean and the hypernodulating mutant line nodulated by R. fredii, ureide is transported as the main nitrogenous compound of fixed nitrogen in the xylem sap in the same way as in plants nodulated with B. japonicum.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.