705
Views
73
CrossRef citations to date
0
Altmetric
Original Articles

Preferential translocation of boron to young leaves in Arabidopsis thaliana Regulated by the BOR1 Gene

, , , &
Pages 345-357 | Received 19 Dec 2000, Accepted 22 Feb 2001, Published online: 04 Jan 2012
 

Abstract

A mutant of Arabidopsis thaliana, bor1-1 (Noguchi et al. 1997: Plant Physiol., 115, 901–916) requires high levels of boron (B) for normal growth. We analyzed the B-deficiency symptoms of bor1-1 mutant plants in detail. A low B supply retarded the growth of the mutant plants more evidently in leaves than in roots. In particular, cell expansion and formation of air spaces were severely impaired by B deficiency in young rosette leaves. Such defects in growth were correlated with the reduced contents of B in leaves. These defects were not observed when a sufficient amount of B was supplied. Uptake experiments with 10B-enriched tracer B demonstrated that B taken up through roots was preferentially transported to young leaves compared to old leaves in the wild-type plants under a low B supply. Such a preferential transport to young leaves was not evident in the mutant plants. In conclusion, our data demonstrated that in A. thaliana plants B is preferentially transported to young organs under a low B supply and that this transport process is controlled at least in part by the BOR1 gene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.