488
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Degradation of an acylated starch-plastic mulch film in soil and impact on soil microflora

, , , &
Pages 701-709 | Received 06 Mar 2002, Accepted 27 May 2002, Published online: 22 Nov 2011
 

Abstract

Degradation of an acylated starch-plastic mulch film was evaluated in two soil types, a gray lowland soil (A) and a volcanic andosol (V). Weight loss, tensile strength (TS) loss and loss of percentage elongation (%E) were measured under laboratory conditions (black and white mulch films), and in the field (black films). Changes in the counts of total bacteria, total fungi, gram-negative bacteria, total Fusarium, ATP (adenosine triphosphate) content, % nitrification, pH (H2O), and total C and total N contents were determined at 4,8, 12, and 20 months in the field test soils where the mulch was repeatedly applied, and compared with controls. Film weight loss was greater in soil V than in soil A in both the laboratory and the field, and the losses were greater in the laboratory than in the field in both soils A and V. Significant TS losses and considerable %E losses were observed. Values were similar in the laboratory and in the field. No significant changes in the counts of bacteria, fungi, gram-negative bacteria, and Fusarium were observed. The ATP content of the test soils increased slightly compared with the initial values. The ATP content in the control soils initially fell, and then increased in response to weeding. Nitrification remained almost unchanged in the test soils, but fell in the control soils until the last sampling. However, the mulch film underwent a definite process of degradation in the soils, with great loss of physical properties and lesser weight loss. This degradation had no adverse impact on the soil microflora.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.