462
Views
0
CrossRef citations to date
0
Altmetric
Special Issue - Biochar 2024

Enhancement of alkali- and oxidation-modified biochars derived from water hyacinth for ammonium adsorption capacity

, , , , & ORCID Icon
Pages 21-33 | Received 02 Jun 2022, Accepted 15 Oct 2023, Published online: 28 Oct 2023
 

ABSTRACT

Wastewater containing high concentrations of ammonium-nitrogen (NH4+-N) is considered a major concern because its untreated discharge has a variety of adverse effects on the environment and human health. Adsorption using biochars is an easy and cost-effective wastewater treatment method. However, aquatic plants such as water hyacinth for biochar feedstock are considered unsuitable for adsorbent use due to limited NH4+-N adsorption capacity. In this study, biochar made from water hyacinth was modified with potassium hydroxide (KOH) and hydrogen peroxide (H2O2) to obtain highly efficient adsorbent. This study aimed to enhance NH4+-N adsorption capacity by KOH- and H2O2-treatments and identify NH4+-N adsorption mechanism of the modified biochars derived from water hyacinth. The NH4+-N adsorption of all biochars was dependent on the initial solution pH increasing from pH 2 to 4, then relatively constant from pH 4 to 8. Pseudo-second-order model and Langmuir model were found to be the best fit for NH4+-N adsorption data. The maximum NH4+-N adsorption capacity of biochars increased about 8 times (17.1 mg g−1) and 10 times (21.5 mg g−1) after KOH- and H2O2-modification, respectively, compared to pristine biochar (2.14 mg g−1). The main NH4+-N adsorption mechanisms were suggested as cation exchange for both biochars particularly KOH-modified biochar, and hydrogen bonding by oxygen-containing surface functional groups for H2O2-modified biochar. This study suggested that aquatic plant-based biochar, which has been considered difficult to use, had potential as a promising alternative adsorbent for removing NH4+-N from wastewater through modification.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work was supported by the Science and Technology Research Partnership for Sustainable Development [JPMJSA2005].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.