623
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Stochastic Polynomial Interpolation for Uncertainty Quantification With Computer Experiments

Pages 457-467 | Received 01 Nov 2013, Published online: 18 Nov 2015
 

Abstract

Multivariate polynomials are increasingly being used to construct emulators of computer models for uncertainty quantification. For deterministic computer codes, interpolating polynomial metamodels should be used instead of noninterpolating ones for logical consistency and prediction accuracy. However, available methods for constructing interpolating polynomials only provide point predictions. There is no known method that can provide probabilistic statements about the interpolation error. Furthermore, there are few alternatives to grid designs and sparse grids for constructing multivariate interpolating polynomials. A significant disadvantage of these designs is the large gaps between allowable design sizes. This article proposes a stochastic interpolating polynomial (SIP) that seeks to overcome the problems discussed above. A Bayesian approach in which interpolation uncertainty is quantified probabilistically through the posterior distribution of the output is employed. This allows assessment of the effect of interpolation uncertainty on estimation of quantities of interest based on the metamodel. A class of transformed space-filling design and a sequential design approach are proposed to efficiently construct the SIP with any desired number of runs. Simulations demonstrate that the SIP can outperform Gaussian process (GP) emulators. This article has supplementary material online.

ACKNOWLEDGMENTS

We thank the associate editor and two referees for comments that helped improve the article significantly. This research is supported by City University of Hong Kong Start-Up Grant 7200364 and Early Career Scheme (ECS) project No. 21201414 sponsored by the Research Grants Council of Hong Kong.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.