504
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effect of nano silver coating on thermal protective performance of firefighter protective clothing

, ORCID Icon, &
Pages 847-858 | Received 09 May 2018, Accepted 21 Sep 2018, Published online: 17 Nov 2018
 

Abstract

The main aim of this experimental work is to find out possible improvement in thermal protective performance of firefighter protective clothing when subjected to different level of radiant heat flux density. Firefighter protective clothing normally consists of three layers: outer shell, moisture barrier and thermal liner. When thermal protective performance of firefighter protective clothing is enhanced, the time of exposure against radiant heat flux is increased, which will provide extra amount of time to firefighter to carry on their work without suffering from severe skin burn injuries. In this study, the exterior side of outer shell was coated with nano-silver metallic particle through magnetron sputtering technology. Coating of outer shell with nano-silver particles was performed at three level of thickness, i.e. 1, 2 and 3 µm, respectively. All the uncoated and silver coated specimens were then characterized on air permeability tester, Permetest and radiant heat transmission machine. It was observed that coating has insignificant difference on the air and water vapor permeability of specimen and a significant decline was recorded for the value of transmitted heat flux density Qc (kW/m2) and percentage transmission factor (%TF Qo) as compared to uncoated specimen when subjected to 10 kW/m2 and 20 kW/m2 indicating improvement of thermal protective performance. These values go on further reduction with increase in thickness of coating layer of nano-silver particles.

Additional information

Funding

This study is supported under Student grant scheme SGS- 21246 of Technical University of Liberec, Czech Republic.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.