611
Views
16
CrossRef citations to date
0
Altmetric
Articles

Hydrophobic properties of textile materials: robustness of hydrophobicity

, &
Pages 1221-1228 | Received 15 May 2018, Accepted 20 Nov 2018, Published online: 02 Jan 2019
 

Abstract

Extremely hydrophobic surfaces have been receiving considerable interest, such as in the contexts of self-cleaning glass or clothes, antifouling paintings, and the reduction of friction drag. A large variety of treatments permits the obtainment of (super)hydrophobic textile surfaces. The point here is to investigate the role of different geometrical textile parameters on the hydrophobicity, and more particularly, on the robustness of this property. The influences of solid surface roughness on the wetting behavior are commonly studied for model solid textures while textile roughness is largely deformable. A laboratory test method is suggested to evaluate this robustness. Some hydrophobic fibrous structures were prepared (using classical woven fabrics and pile fabrics) to investigate the influence of textile structures on their static and forced wetting properties. Static contact angles, contact angle hysteresis, and the contact angle after compression were measured. The meso- and micro-structures appeared to influence either the static wetting or the robustness of the hydrophobicity after compression.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.