678
Views
15
CrossRef citations to date
0
Altmetric
Articles

Novel engineering approach to optimization of thermal comfort properties of hemp containing textiles

, , , &
Pages 1271-1279 | Received 19 Jun 2018, Accepted 03 Dec 2018, Published online: 02 Jan 2019
 

Abstract

The aim of this research was to investigate the possibilities of producing comfort hemp containing textile fabrics by assembling a pure hemp yarn with other-fibre containing yarn. The plain knitted fabrics were produced from two-assembled hemp and three variants of cotton yarns which differed in twist level, all having the same linear density. The transport properties (air permeability, water vapour permeability and thermal resistance) of the hemp-based knitted fabrics were quantitatively analysed. The results obtained demonstrated that the introduction of cotton into hemp-based textiles reduces air and water vapour permeability with the downward trend in thermal resistance. The extent to which the transport properties varied among the hemp/cotton knitted fabrics was dependent on the twist intensity of the cotton yarns. Therefore, the yarn assembling technique is an effective way not only to combine different fibre properties but to take advantage of intrinsic properties of component yarns.

Additional information

Funding

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja) by the Project OI-171029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.