321
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

High-performance hybrid composites made of recycled Nomex, Kevlar, and polyester selvages: mechanical property evaluations

, , &
Pages 1767-1773 | Received 06 Feb 2018, Accepted 09 May 2019, Published online: 25 May 2019
 

Abstract

In modern age, prosperous business, industrial, social, and leisure activities improve and ensure the quality of lives considerably, but are inevitably accompanied with insecurity and dangers that lurk anywhere anytime. People are concerned about safety and have increasing demands on self-protection in terms of working/living environment, accidents, and raising crime rates. The increasing demands of protective textiles cause the mass production of high performance fabrics, leaving considerable amount of high performance selvages. In this study, three kinds of high performance recycled selvages, including Nomex, Kevlar, and PET selvages, are used to make high-performance hybrid composites. The recycled selvages are smashed into staple fibers using a nonwoven manufacturing process. Each recycled staple fibers are individually combined with low-melting-point polyester (LPET) fibers at ratios of 9:1, 7:3, and 5:5, and processed with thermal compression. The LPET fibers contribute to the hybrid composites with thermal bonding points, which decrease the voids between fibers, limit the fiber slide, and enhance the friction force between fibers. The shearing, expelling, and friction functionalities of LPET fibers are expected have a positive influence on the mechanical properties of the high-performance hybrid composites. The morphology of hybrid composites is observed using a scanning electron microscope, and the air permeability, tensile strength, tearing strength, and bursting strength of hybrid composites are evaluated, examining the optimal parameters.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would especially like to thank the Ministry of Science and Technology of Taiwan for financially supporting this research under the Contract MOST 107-2632-E-035-001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.