1,327
Views
37
CrossRef citations to date
0
Altmetric
Research Articles

Impact resistance and failure mechanism of 3D printed continuous fiber-reinforced cellular composites

ORCID Icon, &
Pages 752-766 | Received 28 Feb 2020, Accepted 31 May 2020, Published online: 23 Jun 2020
 

Abstract

The present research investigated previously unexplored attributes of 3D printed continuous fiberglass reinforced Nylon composites, Drop-weight and pendulum (Charpy and Izod) impact resistance including their failure mechanisms with a view to assessing their suitability for prospective high-performance applications such as aerospace, automobile and building industries. The composites were printed with different cellular structures (triangular, hexagonal, rectangular and solid) and three distinct fiber orientations (0/0/0/0, 0/90/0/90 and 0/45/90/-45). Results of the impact assessment of the developed composites exhibited substantial performance when compared to traditional 3D orthogonal plain-woven composites indicating 3D printing process as a promising composite fabrication technology. The effect of fiber orientation was very dominant towards dictating mechanical properties; cross-lay samples (0/90/0/90) absorbed the highest Drop-weigh impact energy followed by quasi-isotropic (0/45/90/-45) and unidirectional (0/0/0/0) composites, while the highest pendulum impact energy was showed by unidirectional composites, followed by cross-lay and quasi-isotropic samples. Incorporation of cellular structure had some effect on the properties measured and composite weight reduction; however, relative contribution of different structures was confounding associating a lot of factors that warn further research.

Disclosure statement

The authors have no potential conflicts of interest.

Additional information

Funding

The research is funded by North Carolina State University, Raleigh, NC, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.