369
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Deposition of electrically-conductive polyaniline/ferrite nanoparticles onto the polypropylene nonwoven for the development of an electromagnetic interference shield material

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2660-2672 | Received 17 Jun 2021, Accepted 09 Nov 2021, Published online: 13 Dec 2021
 

Abstract

The widespread use of electronic devices leads to Electromagnetic Interference (EMI), which reduces equipment's performance and even threatens human health. Consequently, attempts have been made to develop shields against EMI using magnetic and conductive components. In this study, one of the most industrially prominent polypropylene (PP) nonwoven was converted to an EMI shield through the deposition of conductive polyaniline (PAn) and various magnetic (nano)particles (MPs), such as Fe3O4, CoFe2O4, and MnFe2O4. The preparation of PP composite was ensured by polymerization of the aniline in the presence of different MPs impregnated-PP fabrics. The MPs' crystal structures and magnetic properties, and morphological changes of the PP were revealed by XRD, Vibrating Sample Magnetometer (VSM), and SEM techniques. The EMI shielding property of the fabrics was examined within 30 MHz-3 GHz. Accordingly, the double-coated PP/MnFe2O4/PAn composite showed the highest absorption-dominant attenuation (94.2% at 2.11 GHz) with a 12.4 dB EMSE value.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would like to thank Ankara University Research Fund (Project number 19L0430003) for providing financial support to the study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.