87
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Spherical Harmonics and a Semidiscrete Finite Element Approximation for the Transport Equation

&
Pages 53-70 | Published online: 17 Aug 2012
 

Abstract

This work is the first part in a series of two articles, where the objective is to construct, analyze, and implement realistic particle transport models relevant in applications in radiation cancer therapy. Here we use spherical harmonics and derive an energy-dependent model problem for the transport equation. Then we show stability and derive optimal convergence rates for semidiscrete (discretization in energy) finite element approximations of this model problem. The fully discrete problem that also considers the study of finite element discretizations in radial and spatial domains as well is the subject of a forthcoming article.

Acknowledgments

This research is partially supported by the Swedish Foundation of Strategic Research (SSF) in Gothenburg Mathematical Modeling Center (GMMC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.