158
Views
14
CrossRef citations to date
0
Altmetric
Scientific Article

Impact of molybdenum on the copper status of red deer (Cervus elaphus)

, &
Pages 137-141 | Received 24 May 2004, Accepted 16 Sep 2004, Published online: 18 Feb 2011
 

Abstract

AIM: To determine the effect of increasing molybdenum (Mo) intakes on serum and liver copper (Cu) concentrations and growth rates of grazing red deer (Cervus elaphus).

METHODS: Molybdenum- and Cu-amended fertilisers were applied to six 1.1-ha paddocks in a 3 × 2 design. Three levels of Mo were applied on two paddocks at each level in mid April (designated Day 1); levels were: none (control), 0.5 (medium) and 1.0 (high) kg Mo/ha as sodium molybdate. In late May (Day 39), two levels of Cu (none and 3.0 kg Cu/ha, as copper sulphate) were applied to each of the three levels of Mo-treated paddocks. Pasture Mo, Cu and sulphur (S) concentrations were measured at about fortnightly intervals. In late June (Day 74), ten 6-month-old red deer hinds were placed on the six experimental pastures, and serum and liver Cu concentrations were monitored at about monthly intervals for 102 days. The hinds were weighed on four occasions during the trial.

RESULTS: Mean pasture Mo concentrations on Day 56 were 2, 4.6 and 11.3 mg/kg dry matter (DM) for the untreated control, medium and high Mo-treated pastures, respectively. Pasture Cu concentration was 95 mg/kg DM on Day 59, 53 mg/kg DM on Day 90, and 9 mg/kg DM by Day 153. Mean S concentration in pasture was 3.3 (range 3.03–3.45) g/kg DM. Copper application to pasture had no significant effect on serum and liver Cu concentrations in deer so data were pooled within Mo treatment. Mean initial (Day 74) serum Cu concentration was 9.2 µmol/L. In the deer grazing the control Mo pasture, this increased to 10.3 µmol/L on Day 112, before decreasing to 6.4 µmol/L on Day 176. In deer grazing the medium and high Mo-treated pastures, mean serum Cu concentrations were 3.8 and 3.9 µmol/L, respectively, on Day 112, and 2.5 and 3.3 µmol/L, respectively, on Day 176. Mean initial (Day 74) liver Cu concentration was 131 µmol/kg fresh tissue. In the deer grazing the control Mo pasture, this declined to 120 and 52 µmol/kg on Days 112 and Day 176, respectively. In deer grazing the medium and high Motreated pastures, liver Cu concentrations decreased to 55 and 52 µmol/kg fresh tissue, respectively, on Day 112, and 21 and 20 µmol/kg fresh tissue, respectively, on Day 176. Mean serum and liver Cu concentrations were not significantly different between deer grazing the medium and high Mo-treated pastures, and were lower (serum p=0.003, liver p<0.001) in those groups than in deer grazing the untreated control pastures. No clinical signs of Cu deficiency associated with lameness were observed. Deer grazing pastures that had Mo concentrations >10 mg/kg DM had lower (p=0.002) growth rates (100 vs 130 g/day) than those on pastures containing <2.4 mg Mo/kg DM.

CONCLUSION: Increasing pasture Mo concentrations from 2 mg/kg DM to ≥4.6 mg/kg DM significantly reduced serum and liver Cu concentrations in grazing deer. Reduced growth rate was observed at pasture Mo concentrations >10 mg/kg DM.

Acknowledgements

We wish to thank Steve Lees for management of the herd, and Colin Faiers, Dan Robinson, Matthew Deighton, Lex Foote, Peter Schreurs and Wendy Gill for technical assistance. FertResearch and DEEResearch are thanked for providing the funding.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.