619
Views
7
CrossRef citations to date
0
Altmetric
Scientific Article

Association of microsatellite polymorphisms with immune responses to a killed Mycobacterium avium subsp. paratuberculosis vaccine in Merino sheep

, , , , , , , & show all
Pages 237-245 | Received 11 Mar 2009, Accepted 24 Aug 2010, Published online: 16 Feb 2011
 

Abstract

AIM: To study the association of polymorphisms at five micro-satellite loci with immune responses to a killed Mycobacterium avium subsp. paratuberculosis (Map) vaccine.

METHODS: Merino sheep (504 vaccinates and 430 unvaccinated controls) from a long-term Johne's vaccine trial undertaken on three different properties in the Central Tablelands of New South Wales, Australia, were genotyped for five micro-satellite markers located in three immunologically significant chromosome regions. The marker loci included three from the major histocompatibility complex (MHC), namely DYMS1, OLADRB and SMHCC1; and one each from the solute carrier family 11 member 1 (SLC11A1), OVINRA1, and the interferon-γ (IFN-γ), o(IFN)-γ, gene regions. Associations between immune responses and genetic polymorphisms at the marker loci were examined by analysing both allelic and genotypic effects.

RESULTS: The o(IFN)-γ locus had only two alleles, whereas the other four loci exhibited extensive polymorphism, with the number of alleles ranging from 10 (OVINRA1) to 21 (DYMS1), resulting in 30–92 genotypes per locus. Heterozygosities varied between 37% (o(IFN)-γ) and 87% (SMHCC1), while information on polymorphic contents ranged from 0.31 (o(IFN)-γ) to 0.87 (DYMS1). Each of the three properties exhibited unique allelic and genotypic frequencies. Analysis of immune response data revealed strong antibody and IFN-γ responses as early as 2 months post-vaccination. Immune responses in control animals on all three properties remained consistently low, except for slightly elevated IFN-γ responses at a few time-points on two properties, concomitant with exposure to natural infection. Genotype-phenotype association analyses revealed a number of marker geno types/alleles to be significantly associated with antibody and IFN-γ responses. However, the effects of only five genotypes (one each at DYMS1, OLADRB, SMHCC1, OVINRA1 and o(IFN)-γ) and three alleles (one each at o(IFN)-γ, DYMS1 and OLADRB) on IFN-γ responses were consistent across the three properties.

CONCLUSION: Considering the significance of IFN-γ responses in protection against Map, it is possible that the genotypes/alleles identified might have a role in protective immune responses to natural Map infections, and further studies are warranted to confirm this.

Acknowledgements

Financial support for the project from Meat & Wool New Zealand, and the award of a doctoral scholarship by Massey University, New Zealand, to the first author are gratefully acknowledged. The authors are thankful to Meat and Livestock Australia, the New South Wales Department of Primary Industries, and the University of Sydney, for providing access to blood samples and immunological data utilised in the study.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.