153
Views
0
CrossRef citations to date
0
Altmetric
Short Communications

The impact of highly concentrated Mo and Cu dietary supplements, fed as a bolus, on the efficacy of chelated versus inorganic Cu in cattle on a low-Cu diet

, , &
Pages 345-348 | Received 04 Sep 2012, Accepted 07 Dec 2012, Published online: 27 Feb 2013
 

Abstract

AIM: To compare the efficacy of chelated versus inorganic forms of dietary Cu supplements, fed as a bolus, when challenged by a daily bolus of dietary Mo in cattle on a low-Cu diet.

METHODS: Forty non-lactating, Friesian dairy cows of adequate Cu status were assigned to four groups and fed a basal diet of baled silage containing 5.3 mg Cu and 0.4 mg Mo/kg DM. The experimental design was a factorial of two chemical forms of supplemental Cu and two levels of Mo intake, provided as pelleted grain supplements made from crushed barley/molasses plus Cu and Mo. The supplements contained 140 mg Cu/kg as Cu sulphate pentahydrate (CS), 140 mg Cu/kg as Cu glycinate (CG), CS plus 38 mg Mo/kg as sodium molybdate (CS+Mo), or CG plus 38 mg Mo/kg (CG+Mo). Commencing on Day 0, supplements were fed once daily (offered 1–1.2 kg/cow) and were completely consumed within 5–10 minutes, which constitutes a bolus type of administration. Liver samples were collected by biopsy at Days −24, 13, 41 or 47, and 69 for Cu determinations.

RESULTS: The diets fed to the Cu+Mo groups were roughly equivalent to 25 mg Cu and 5.7 mg Mo/kg DM. Mean initial concentration of Cu in liver for all groups was 516 (SE 54) μmol Cu/kg fresh tissue. In cows supplemented with CS and CG, the final (Day 69) concentrations increased (p<0.01) to 939 (SE 166) and 853 (SE 163) μmol Cu/kg, respectively. These values were not different (p=0.72). For groups CS+Mo and CG+Mo, the final concentrations of 535 (SE 122) and 453 (SE 102) μmol Cu/kg were not different from initial values or from each other (p>0.25). The rate of accumulation of Cu in liver following bolus Cu and Mo intake was highly variable but was not affected by initial concentration of Cu in liver (p>0.9) or by the form of Cu (p>0.6). Mean rates of accumulation of Cu in liver were 4.0 (SD 3.8) and 0.65 (SD 2.0) μmol Cu/kg fresh tissue/day for the Cu-only treatments and the Cu+Mo treatments, respectively.

CONCLUSIONS: When fed together as a bolus, high Mo intake negated the effect of supplemental Cu but it did not reduce liver Cu stores. There was no difference in the reaction of dietary Mo with chelated Cu (as glycinate) versus inorganic Cu (as sulphate) dietary supplements.

Acknowledgements

The authors thank Robin Whitson for the daily management of the cattle, and Massey University for providing the animals and facilities. Funding was provided by AGMARDT and S.C. Balemi of Agvance Marketing Ltd.

Notes

*Non-peer-reviewed

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.